Wolmer’s Trust High School for Girls
INFORMATION TECHNOLOGY (GENERAL PROFICIENCY)

Grade 11

Teacher: Mrs. McCallum-Rodney

LOOPING

INTRODUCTION

We have looked at two basic control structures – simple sequencing and decision (if-then-else). Additionally, we looked at a control structure called CASE, which is actually an implementation of the nested IF-THEN-ELSE structure. Our focus in this topic is looping.

Many times we meet upon situations where there are a number of tasks we would like to repeat numerous times. For example, accepting the name of a student is simple, but what if we need to accept the names of 1000 students? Would you create 1000 variable and write 1000 lines to accept the names. That would be an almost impossible task.

Looping will help to alleviate the stress identified above. Looping allows you to accept the 1000 names of students quite easily. Consider the code segment below:

count = 1000

WHILE (count >= 1) DO

PRINT “Please enter name”

READ name

count = count - 1

ENDWHILE

What do you understand from the code segment above?

IMPORTANT COMPONENT S OF LOOPS

· All three components must be included if the loop is going to work.

IMPLEMENTATION OF LOOPS
Loops can be implemented by means of a:

· FOR structure
· This structure is used when you know definitely where you would like to stop. For example, if you want the age of 100 persons, you know where you want to stop – which is at 100. Hence, this is a definite loop.
· Example

FOR count = 1 TO 10

PRINT “*”

ENDFOR

What is the output of this code segment?
· The corresponding flowchart is:

· The C Program is as follows:

#include<stdio.h>

int main ()

{

int count;

for(count = 1; count<=10; count = count + 1)

{

printf(“*”);

}

return 0;

}

· WHILE structure
· This structure is used when you know or do not know where to stop. Hence, it can be used as a definite or an indefinite loop. This specific structure is normally used when the user is the one determining when to stop the looping of instructions.
· Example:

PRINT “Would you like to enter an age?”

READ ans

WHILE (ans == ‘y’) DO

PRINT “Enter age”

READ age

PRINT “Would you like to enter another age?”

READ ans

ENDWHILE

· The corresponding C Program is:

#include<stdio.h>

int main ()

{

char ans;

int age;

printf(“Would you like to enter an age?”);

scanf(“%c”, &ans);

while (ans == ‘Y’)

{

printf(“Please enter the age?”);

scanf(“%d”, &age);

printf(“Would you like to enter another age?”);

scanf(“%c”, &ans);

}

return 0;

 }

· The corresponding flowchart

Components

Initialization (starter)

This is what will start the loop.

Example: count = 1

	OR

The user will do the initialization, by the program reading a value from the user.

Condition

This will determine if you can enter the loop.

E.g. while (a < count)

Control (updater)

This will be in the form of:

increment – increase by a value

decrement – decrease by a value

user control – user determine when to stop.

This line has three things in it:

initialization, which is, count = 1

condition – the ‘TO’ tells you that count should not pass 10, therefore the condition is count <=10

increment – the ‘TO’ also tells you that you are increasing by 1, until you reach 10.

Start

count = 1

count

< = 10

PRINT “*”

yes

STOP

START

PRINT “Would you like to enter an age?”

READ ans

no

ans == ‘y’

yes

PRINT “Enter age?”

no

READ age

PRINT “Would you like to enter another age?”

READ ans

STOP

NOTE:

No matter what loop you use, the flowchart representation is still the same.

count = count +1

Page 2

